

Science Teachers Colloquium

"Energy Supply and Demand"

29 July 2024

Dr. Donald L. Paul Executive Director of the USC Energy Institute William M. Keck Professor of Energy Resources

University of Southern California

Outline

- Fundamental concepts in energy supply and demand
- Global energy trends to 2050
- The unique characteristics of the U.S. energy system
- The Energy Transition and system challenges
- Class discussion

All materials are subject to copyright and cannot be reproduced without written authorization of USC

Outline

- Fundamental concepts in energy supply and demand
- Global energy trends to 2050
- The unique characteristics of the U.S. energy system
- The Energy Transition and system challenges
- Class discussion

All materials are subject to copyright and cannot be reproduced without written authorization of USC

Concept #1:

Energy systems are multi-dimensional

Science and Technology

+

Investment and Economics

+

Government and Regulation

+

Societal Expectations and Consumer Behavior

Energy systems vary widely by region and country

Fundamental Concept #2: All energy systems are impacted by scale, time, and capital

Scale, Time, and Capital

• Scale:

- \$20 Billion worth of energy consumed every day
- Global oil consumption is more than 0.5 gallon per day for every human on earth
- Global growth in electricity demand requires constructing the equivalent of 2 major power plants per day
- Globally there are more than 1 billion light-duty vehicles on the road (U.S. has about 275 million); expected to reach 2+ billion by 2050

Scale, Time, and Capital

- Scale:
- Time:
 - Autos last about 17 years (U.S. average) and major appliances last 10+ years
 - Refineries and power plants last decades to
 50+ years
 - Oil, gas, and mining resources last decades to 100+ years

Scale, time, and capital

- Scale:
- Time:
- Capital:
 - Global energy investments are about \$2 Trillion per year
 - Diversification of energy supply investments continues with the largest growth segments in non-hydro renewables and natural gas
 - Energy investment needed through 2030: ~ \$25 Trillion to meet expected demand growth and planned fossil fuel and nuclear facilities retirements
 - Some estimates for meeting Energy Transition targets by 2050 will require an <u>additional</u> \$ 75 Trillion

Scale, time, and capital impacts Example: U.S. ethanol production

Note: Marketing year for corn starts in September. Source: USDA, Economic Research Service, Feed Grains Database.

Example: Growth in battery demands puts pressure on long-term natural resource development

Scale and Complexity Effects:

- One 1000-pound car battery requires 500,000-pounds of materials
- For EVs to fully replace new ICE vehicles will require global mining to expand by at least 5X

Concept #3:

Energy demand has three major drivers

Energy Demand =

Population

Х

Per Capita GDP

Х

Economic Energy Intensity

Estimating energy demand changes

% Population

+

+

Seconomic Energy Intensity

Concept #4:

ALL energy production begins with natural resource development

- Land
- Water
- Sun
- Wind
- Biomass
- Geological resources

 Hydrocarbons
 - Minerals

Outline

- Fundamental concepts in energy supply and demand
- Global energy trends to 2050
- The unique characteristics of the U.S. energy system
- The Energy Transition and system challenges
- Class discussion

All materials are subject to copyright and cannot be reproduced without written authorization of USC

U.S. DOE Energy Information Administration(EIA) projections of global primary energy use to 2050

Data source: U.S. Energy Information Administration, International Energy Outlook 2023 (IEO2023)

Note: Each line represents IEO2023 Reference case projections. Shaded regions represent maximum and minimum values for each projection year across the IEO2023 Reference case and side cases. Quads=quadrillion British thermal units.

U.S. DOE Energy Information Administration(EIA) projections of global primary energy use to 2050

Data source: U.S. Energy Information Administration, International Energy Outlook 2023 (IEO2023) Note: Each line represents IEO2023 Reference case projections. Shaded regions represent maximum and minimum values for each projection year across the IEO2023 Reference case and side cases. Quads=quadrillion British thermal units.

Projections on population, per capita GDP, and energy intensity to 2050

Data source: U.S. Energy Information Administration, International Energy Outlook 2023 (IEO2023) Note: Shaded regions represent maximum and minimum values for each projection year across the IEO2023 Reference case and side cases. Our global population assumptions do not vary across side cases. GDP=gross domestic product; PPP=purchasing power parity; Btu=British thermal units; Ref=Reference case. Estimating global demand growth

Energy Demand Growth =

Population (+1%)

+

Per Capita GDP (+2.5%)

+

Economic Energy Intensity (-1.5%)

Power is the fastest growth segment in global energy

Source: U.S. Energy Information Administration, International Energy Outlook 2019 Dr. Linda Capuano, EIA IEO2020, October 14, 2020

Projections of energy demand by sector

Note: Quads=quadrillion British thermal units. Each line represents IEO2023 Reference case projections. Shaded regions represent maximum and

minimum values for each projection year across the IEO2023 Reference case and side cases.

Outline

- Fundamental concepts in energy supply and demand
- Global energy trends to 2050
- The unique characteristics of the U.S. energy system
- The Energy Transition and system challenges
- Class discussion

All materials are subject to copyright and cannot be reproduced without written authorization of USC

The U.S. has the largest and most diverse energy supply system

U.S. primary energy consumption by energy source, 2023

total = 93.59 quadrillion British thermal units total = 8.24 quadrillion British thermal units

Data source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1, April 2024, preliminary data

Note: Sum of components may not equal 100% because of independent rounding.

The U.S. energy supply system continues to grow and evolve

U.S. primary energy production by major sources, 1950-2023

quadrillion British thermal units

Data source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.2, April 2024,

preliminary data for 2023

Cia' Note: NGPL=natural gas plant liquids

U.S. energy demand by sector

Source: U.S. Energy Information Administration, International Energy Outlook 2019

Outline

- Fundamental concepts in energy supply and demand
- Global energy trends to 2050
- The unique characteristics of the U.S. energy system
- The Energy Transition and system challenges
- Class discussion

All materials are subject to copyright and cannot be reproduced without written authorization of USC

eia

Energy consumption in the United States (1776–2021)

eia

Energy consumption in the United States (1776–2021)

eia

Energy consumption in the United States (1776–2021)

eia

Energy consumption in the United States (1776–2021)

Historical drivers of energy transitions

- New energy resources and technology deployable at scale
- Increases in energy demand from new applications and markets of scale (automobiles, aircraft, computers, etc.)
- Growth in available investment capital

Past Energy Transitions have been **additive** to supply to meet new growth in energy demand

Drivers of the new Energy Transition

- Lower-carbon energy resources and technologies deployable at scale
- Growth in political and societal demands for lower-carbon energy sources
- Shifting investment capital flows

The new Energy Transition is **both additive and substitutive** to meet demand growth **and** displace higher-carbon supplies

Energy Transition example: California's power system

In-State Electric Generation by Fuel Type Source: Quarterly Fuels and Energy Reporting Regulations

Ref. CA Energy Commission

Some observations on the Energy Transition

- The Energy Transition will be "uneven"
- Unforeseen events will intervene (as they always have)
- The Transition will take longer and may take form in ways which challenge current political goals
- Capital investment level will need to greatly expand
- The Transition is not possible without the transition of the fossil energy system

Challenges to the Energy Transition for the U.S. (and the world)

- Meeting energy demand growth for electrical power
 - Electrification of ground transportation
 - Meeting rapid growth in data centers and demand for AI
 - Creating more resiliency to meet a changing climate

U.S. EV penetration

Data source: U.S. Energy Information Administration, State Energy Data System **Note:** Data are for end of year. EV=electric vehicle.

U.S. EV penetration

Data source: U.S. Energy Information Administration, State Energy Data System **Note:** Data are for end of year. EV=electric vehicle.

Amazon buys nuclear-powered data center from Talen

Thu, Mar 7, 2024, 5:01AM Nuclear News

Susquehanna nuclear plant in Salem Township, Penn., along with the data center in foreground. (Photo: Talen Energy)

International Energy Agency Secure Sustainable Together

The Future of Cooling

Challenges to the Energy Transition for the U.S. (and the world)

- Meeting energy demand growth for electrical power
 - Electrification of ground transportation
 - Meeting rapid growth in data centers and demand for AI
 - Creating more resiliency to meet a changing climate
- Re-industrializing while de-carbonizing
- Finding the enormous investment capital needed
- Developing the next generation of energy workers

• All energy systems and technologies depend upon the development of natural resources.

- All energy systems and technologies depend upon the development of natural resources.
- The scale of the global energy system is enormous, which in turn, drives the time frame and level of capital investment needed for the Energy Transition.

- All energy systems and technologies depend upon the development of natural resources.
- The scale of the global energy system is enormous, which in turn, drives the time frame and level of capital investment needed for the Energy Transition.
- Global energy demand is going to <u>increase</u> as population gains and economic growth are likely to outpace improvements in energy system efficiency.

- All energy systems and technologies depend upon the development of natural resources.
- The scale of the global energy system is enormous, which in turn, drives the time frame and level of capital investment needed for the Energy Transition.
- Global energy demand is going to <u>increase</u> as population gains and economic growth are likely to outpace improvements in energy system efficiency.
- The electricity generation component of energy is decarbonizing (with exceptions) by displacement of coal by renewables and natural gas.

- All energy systems and technologies depend upon the development of natural resources.
- The scale of the global energy system is enormous, which in turn, drives the time frame and level of capital investment needed for the Energy Transition.
- Global energy demand is going to <u>increase</u> as population gains and economic growth are likely to outpace improvements in energy system efficiency.
- The electricity generation component of energy is decarbonizing (with exceptions) by displacement of coal by renewables and natural gas.
- Decarbonizing the transportation, industrial, and agricultural sectors <u>at scale</u> remains a major economic, political, and technological challenge.

 All energy systems and technologies depend upon the development of natural resources

Final thought:

Transition of the energy system will involve more than just changing

- technologies and policies
- decarbonizing (with exceptions) by displacement of coal by renewables and natural gas.
- Decarbonizing the transportation, industrial, and agricultural sectors <u>at scale</u> remains a major economic, political, and technological challenge.

าร

Outline

- Fundamental concepts in energy supply and demand
- Global energy trends to 2050
- The unique characteristics of the U.S. energy system
- The Energy Transition and system challenges
- Class discussion

All materials are subject to copyright and cannot be reproduced without written authorization of USC